2020高考备考

高考

101教育热线电话
400-6869-101
微信
当前位置: 高考> 高考备考> 高考各科复习> 高考数学> 高考数学知识点

高考数学知识点:几种基本初等函数

来源:101教育网整理 2017-03-01 字体大小: 分享到:

  函数的基本性质里,我们学习了单调性,奇偶性等,研究函数离不开这些性质,101教育小编在此跟大家分享下函数的奇偶性,希望对大家有所帮助,更多高考动态请继续关注我们101教育网!

  奇偶性

  注图:(1)为奇函数(2)为偶函数

  1.定义

  一般地,对于函数f(x)

  (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

  (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

  (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

  (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

  说明:①奇、偶性是函数的整体性质,对整个定义域而言

  ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

  (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

  ③判断或证明函数是否具有奇偶性的根据是定义

  2.奇偶函数图像的特征:

  定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。

  f(x)为奇函数《==》f(x)的图像关于原点对称

  点(x,y)→(-x,-y)

  奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

  偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

  3.奇偶函数运算

  (1).两个偶函数相加所得的和为偶函数.

  (2).两个奇函数相加所得的和为奇函数.

  (3).一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.

  (4).两个偶函数相乘所得的积为偶函数.

  (5).两个奇函数相乘所得的积为偶函数.

  (6).一个偶函数与一个奇函数相乘所得的积为奇函数.

  学习奇偶性,利用数形结合的思想更容易理解,也为大家以后学习基本初等函数打下基础。奇偶性这一块知识不算难,大家用心学,就容易掌握哦。

上一篇:高考数学:函数的概念

下一篇:高考数学知识点:指数函数与对数函数

2020高考备考
标签: 高考 数学知识点 基本初等函数 (责任编辑:wangliru)

期末资料限时领

姓名
手机号
年级
*图形验证码
获取验证码
免费预约
网校期末提升