2020高考备考

高考

101教育热线电话
400-6869-101
微信
当前位置: 高考> 高考备考> 高考各科复习> 高考数学> 高考数学知识点

几何学悖论 -- 不可逃遁的点

来源:未知 2013-04-12 字体大小: 分享到:

M:帕特先生沿着一条小路向山顶进发。他早晨七点动身,当晚七点到达山顶。

  M:他在山顶做了一夜的考察工作,第二天早晨七点沿同一条小路下山。

  M:那天晚上七点钟,他到达山脚。在那里,他遇到了他的拓扑学老师克莱因夫人。

  ;不动点定理;提供了一个很简单的例证。其证明是个;存在性证明;,它告诉我们至少存在一个这样的点,并没告诉我们这个点在什么地方。当把拓扑学应用于其它数学分支或其它各门科学时,不动点定理起着非常重要的作用。

  学生们一定会对下面这个著名的不动点定理感兴趣。这个定理可以这样来说明:取一个浅盒和一张纸,纸恰好盖住盒内的底面。可想而知此时纸上的每个点与正在它下面的盒底上的那些点配成对。把这张纸拿起来,随机地揉成一个小球,再把小球扔进盒里。拓扑学家已经证明,不管小球是怎样揉成的,也不管它落在盒底的什么地方,在揉成小球的纸上至少有一个这样的点,它恰好处在它盒底原来配对点的正上方!关于这个定理可参见理查德t;库朗和赫伯特t;罗宾斯所著《什么是数学?》一书中;一个不动点定理;这一节。

  这个定理首先为荷兰数学家L.E.J. 布劳尔在1912年所证明。它具有许多奇妙的应用。例如,由这个定理可以断言:在任一时刻,在地球上至少有一个地点没有风。用它还证明了这样的事实:如果一个球面完全被毛发所覆盖那么无论如何也不能把所有的毛发疏平。有趣的是,我们却可以把覆盖整个圆环面上的毛发疏平。


上一篇:平面向量、平面向量的基本运算

下一篇:数列通项与数列求和

2020高考备考
标签: 数学 (责任编辑:101教育小编)

寒假学习资料限时领

姓名
手机号
年级
*图形验证码
获取验证码
免费预约
网校期末提升